

Progressive Identification of True Labels for Partial-Label Learning

Jiaqi Lv¹ Miao Xu^{2,3} Lei Feng⁴ Gang Niu² Xin Geng¹ Masashi Sugiyama^{2,5} In: Proceedings of the 37th International Conference on Machine Learning (ICML 2020)

Introduction

Partial-label learning (PLL) is a typical weakly supervised learning problems, and arises in many real-world tasks

Ordinary multi-class classification (i.e., supervised learning)

P (true) & N labels are available for training

positive (true) label

a set of possible P labels (candidate labels) are available for training

Candidate label * negative label

Most existing PLL methods must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data

Let PLL enjoy the leading-edge models and optimizers from **deep** learning communities

Let the PLL method **not benefit purely from** the network architecture, but also our careful algorithm design

Classifier-Consistent Risk Estimator

<u>Notation</u>		
Ordinary multi-class classification Partial-Label Learning		
Space $\mathcal{X} \subseteq \mathbb{R}^d$	$\mathcal{Y} = [c] := \{$	$\{1, 2, \dots, c\}$ $\mathcal{S} = \{\mathcal{P}(\mathcal{Y})/\emptyset/\mathcal{Y}\}$
Random variables $(X,Y) \in \mathcal{X} \times \mathcal{Y}$		$(X,S) \in \mathcal{X} \times \mathcal{S}$
Density $p(x,y)$		p(x,s)
Expectation $\mathcal{R}(\boldsymbol{g}) = \mathbb{E}_{(X,Y) \sim p(x,y)}[\ell(\boldsymbol{g}(X), \boldsymbol{e}^Y)]$		$\mathcal{R}_{\mathrm{PLL}}(\boldsymbol{g}) = \mathbb{E}_{(X,S) \sim p(x,s)}[\ell_{\mathrm{PLL}}(\boldsymbol{g}(X),S)]$
Optimal classifier $\boldsymbol{g}^* = rg \min_{\boldsymbol{g} \in \mathcal{G}} \mathcal{R}(\boldsymbol{g})$		$oldsymbol{g}_{ ext{PLL}}^* = rgmin_{oldsymbol{g}\in\mathcal{G}} \mathcal{R}_{ ext{PLL}}(oldsymbol{g})$
$\boldsymbol{g} : \mathcal{X} \to \mathbb{R}^c \qquad g_k(X) = p(Y = k X) \qquad \hat{Y} = \underset{i \in \mathcal{Y}}{\operatorname{argmax}} g_i(X)$		
Lemma 1 (Liu & Dietterich, 2014) The ambiguity degree is defined as $\gamma = sup_{(X,Y)\sim p(x,y), \bar{Y}\in\mathcal{Y}, S\sim p(s x,y), \bar{Y}\neq Y} \Pr(\bar{Y}\in S)$ If ($\gamma < 1$) i.e. the under the small ambiguity degree condition, the PLL problem is ERM learnability .		
a negative label is not always co-occurred with the true label	a classification error made on any instance will be detected with probability at least 1 - γ (Liu & Dietterich, 2014)	
Lemma 2. If a certain loss mean squared error loss),	function is use the optimal cl	ed (e.g. the cross-entropy loss o lassifier satisfies

the optimal classifier $oldsymbol{g}^* = rgmin_{oldsymbol{g}\in\mathcal{G}}\mathcal{R}(oldsymbol{g})$ can recover the class-posterior probability

Classifier-Consistent Risk Estimator

Partial label risk estimator

 $\ell_{\mathrm{PLL}}(\boldsymbol{g}(X), S) = \min_{i \in S} \ell(\boldsymbol{g}(X), \boldsymbol{e}^i)$ $\mathcal{R}_{\mathrm{PLL}}(\boldsymbol{g}) = \mathbb{E}_{(X,S) \sim p(x,s)} \min_{i \in S} \ell(\boldsymbol{g}(X), \boldsymbol{e}^{i})$

Classifier-consistency

Suppose that the learning is conducted under the deterministic scenario, and Lemma 1 and Lemma 2 are satisfied. Then the optimal PLL minimizer is equivalent to the ordinary optimal minimizer $oldsymbol{g}^*_{ ext{PLL}}=oldsymbol{g}^*$

Estimation error bound

For any $\delta > 0$, we have with probability at least $1 - \delta$

 $\mathcal{R}_{\mathrm{PLL}}(\widehat{\boldsymbol{g}}_{\mathrm{PLL}}) - \mathcal{R}_{\mathrm{PLL}}(\boldsymbol{g}_{\mathrm{PLL}}^*) \le 4cL_{\ell}\mathfrak{R}_n(\mathcal{G}) + 2M\sqrt{\frac{\log(2/\delta)}{2n}}$ This means the risk of the empirical classifier learned by ERM can be

bounded by the risk of the optimal PLL classifier

Benchmark Solution

- **Difficulty:** the min operator is non-differentiable
- **Ideally:** only one (true) label should be taken into account
- **Our solution:** relax the minimal loss by the shifting confidences
- Advantage: this method can be easily implemented over flexible
- learning models and powerful stochastic optimization

Requirement on the loss function: can be decomposed onto each label: $\ell(\boldsymbol{g}(X), \boldsymbol{e}^Y) = \sum \ell(g_i(X), e_i^Y)$

Thus with appropriate confidences w_i, the risk can be expressed as

 $\widehat{\mathcal{R}}_{\text{PLL}} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} w_{ij} \ell(g_j(x_i), e_j^{s_i}) \quad e^{s_i} = \sum_{k \in s_i} e^k \quad \mathbf{w}_i \in \Delta^{c-1}$

Remarks

- PRODEN gets rid of the overfitting issue of EM methods
- PRODEN has great flexibility for models and loss functions

only one label contributes to retrieve the classifier!

Update Model $\widehat{\mathcal{R}}_{\text{PLL}} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \ell(g_j(x_i), e_j^{s_i})$

1 School of Computer Science and Engineering, Southeast University, Nanjing, China 2 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan 3 The University of Queensland, Australia 4 School of Computer Science and Engineering, Nanyang **Technological University, Singapore** 5 University of Tokyo, Tokyo, Japan.

Datasets

q: $q = \Pr(\tilde{y} = 1 | y = 0)$

20Newsgroups

Real-world partial-label datasets: Lost, Birdsong, MSRCv2, Soccer Player, Yahoo! News

Results on MNIST in the binomial case

- all the models
- probability
- GA and D²CNN

• A pair flip strategy to simulate ambiguity degree: as $n \to \infty$, $\gamma \to q$ • **PRODEN** tends to be less affected with increased ambiguity

We proposed a risk estimator for PLL, theoretically analyzed the classifier-consistency, and established an estimation error bound We proposed a method for PLL which is compatible with any learning model including DNNs or stochastic optimizer Experiments demonstrated our proposal is compared favorably with

- state-of-the-art PLL methods

More information

http://palm.seu.edu.cn https://arxiv.org/abs/2002.08053 https://github.com/Lvcrezia77/PRODEN

Experiments

- Benchmark datasets: MNIST, Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10 Generate partially labeled versions by a binomial/pair flip strategy with
- **UCI datasets**: Yeast, Texture, Dermatology, Synthetic Control,

PRODEN is always the best method and comparable to PN-oracle with

• The performance of the baselines is greatly reduced with a large flipping • The superiority always stands out for PRODEN compared with two deep methods

Analysis on the ambiguity degree on Kuzushiji-MNIST

Conclusion